next up previous
Next: About this document ... Up: No Title Previous: ACKNOWLEDGMENTS

Bibliography

Abraham, F. F. (1997).
On the transition from brittle to plastic failure in breaking a nanocrystal under tension (NUT).
Europhys. Lett. 38, 103-106.

Abraham, F. F., Schneider, D., Land, B., Lifka, D., Skovira, J., Gerner, J., and Rosenkrantz, M. (1997).
Instability dynamics in three-dimensional fracture: an atomistic simulation.
J. Mech. Phys. Solids 45, 1461-1471.

Barts, D. B. and Carlsson, A. E. (1995).
Order-N method for force calculation in many-dislocation systems.
Phys. Rev. E 52, 3195.

Barts, D. B. and Carlsson, A. E. (1997).
Simulation and theory of polygonization in single glide.
Phil. Mag. A 75, 541-562.

Bulatov, V., Abraham, F. F., Kubin, L., Devincre, B., and Yip, S. (1998).
Connecting atomistic and mesoscale simulations of crystal plasticity.
Nature 391, 669-672.

Canel, L. M., Carlsson, A. E., and Thomson, R. (1995).
Efficient effective-energy method for lattice-Green's-function simulations of fracture.
Phys. Rev. B 52, 158-167.

Carlsson, A. E. and Thomson, R. (1998).
Fracture toughness of materials: From atomistics to continuum theory.
Solid State Physics 51, 233-280.

Chen, D. (1995).
Structural modeling of nanocrystalline materials.
Comput. Mater. Sci. 3, 327-333.

Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H. (1989).
On the validity of the Hall-Petch relationship in nanocrystalline materials.
Scripta Metall. 23, 1679-1684.

Clarke, A. S. and Jónsson, H. (1993).
Structural changes accompanying densification of random-sphere packings.
Phys. Rev. E 47, 3975-3984.

D'Agostino, G. and Van Swygenhoven, H. (1996).
Stuctural and mechanical properties of a simulated nickel nanophase.
Mat. Res. Soc. Symp. Proc. 400, 293-298.

Daw, M. S. and Baskes, M. I. (1984).
Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals.
Phys. Rev. B 29, 6443-6453.

Devincre, B. and Kubin, L. P. (1994).
Three dimensional simulations of plasticity.
In: Strength of Materials, edited by H. Oikawa, K. Maruyama, S. Takeuchi, and M. Yamaguchi (The Japan Institute of Metals). pp. 179-182.

Devincre, B. and Kubin, L. P. (1997).
Mesoscopic simulations of dislocations and plasticity.
Mater. Sci. Eng. A 234-236, 8-14.

Finnis, M. W. and Sinclair, J. E. (1984).
A simple empirical N-body potential for transition metals.
Phil. Mag. A 50, 45-55.

Finnis, M. W. and Sinclair, J. E. (1986).
Erratum.
Phil. Mag. A 53, 161.

Furukawa, M., Horita, Z., Nemoto, M., Valiev, R. Z., and Langdon, T. G. (1996).
Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size.
Acta Mater. 44, 4619-4629.

Gulluoglu, A. N., Srolovitz, D. J., LeSar, R., and Lomdahl, P. S. (1989).
Dislocation distributions in two dimensions.
Scr. Met. 23, 1347-1352.

Gumbsch, P. (1995).
An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling.
J. Mater. Res. 10, 2897-2907.

Hall, E. O. (1951).
The deformation and ageing of mild steel: III Discussion of results.
Proc. Phys. Soc. London B64, 747-753.

Holt, D. L. (1970).
Dislocation cell formation in metals.
J. Appl. Phys. 41, 3197-3201.

Horita, Z., Smith, D. J., Furukawa, M., Nemoto, M., Valiev, R. Z., and Langdon, T. G. (1996).
An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy.
J. Mater. Res. 11, 1880-1890.

Jacobsen, K. W., Nørskov, J. K., and Puska, M. J. (1987).
Interatomic interactions in the effective-medium theory.
Phys. Rev. B 35, 7423-7442.

Jacobsen, K. W., Stoltze, P., and Nørskov, J. K. (1996).
A semi-empirical effective medium theory for metals and alloys.
Surf. Sci. 366, 394-402.

Jónsson, H. and Andersen, H. C. (1988).
Icosahedral ordering in the Lennard-Jones liquid and glass.
Phys. Rev. Lett. 60, 2295-2298.

Juul Jensen, D. (1997a).
Orientational Aspects of Growth during Recrystallization (Risø, Roskilde).

Juul Jensen, D. (1997b).
Simulation of recrystallization microstructures and textures: Effects of preferential growth.
Metall. Mater. Trans. A 28A, 15-25.

Kohlhoff, S., Gumbsch, P., and Fischmeister, H. F. (1991).
Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model.
Phil. Mag. A 64, 851-878.

Kratochvíl, J., Saxlovà, M., Devincre, B., and Kubin, L. P. (1997).
On the sweeping of dipolar loops by gliding dislocations.
Mater. Sci. Eng. A 234-236, 318-321.

Kubin, L. P., Canova, G., Condat, M., Devincre, B., Pontikis, V., and Bréchet, Y. (1992).
Dislocation microstructures and plastic flow: a 3D simulation.
Solid State Phenomena 23-24, 455-472.

Li, S., Sun, L., and Wang, Z. (1994).
A grain boundary model of Hall-Petch relationship in nanocrystalline materials.
In: Strength of Materials, edited by H. Oikawa, K. Maruyama, S. Takeuchi, and M. Yamaguchi (The Japan Institute of Metals), pp. 873-876, pp. 873-876.

Lian, J., Baudelet, B., and Nazarov, A. A. (1993).
Model for the prediction of the mechanical behaviour of nanocrystalline materials.
Mater. Sci. Eng. A 172, 23-29.

Lu, K. and Sui, M. L. (1993).
An explanation to the abnormal Hall-Petch relation in nanocrystalline materials.
Scripta Metall. Mater. 28, 1465-1470.

Mills, G., Jónsson, H., and Schenter, G. K. (1995).
Reversible work transition state theory: application to dissociative adsorption of hydrogen.
Surf. Sci. 324, 305-337.

Morris, D. G. and Morris, M. A. (1997).
Hardness, strength, ductility and toughness of nanocrystalline materials.
Mater. Sci. Forum 235-238, 861-872.

Nabarro, F. R. N. (1987).
Theory of crystal dislocations (Dover, New York).

Nieh, T. G. and Wadsworth, J. (1991).
Hall-Petch relation in nanocrystalline solids.
Scripta Met. Mater. 25, 955-958.

Nieman, G. W., Weertman, J. R., and Siegel, R. W. (1990).
Tensile strength and creep properties of nanocrystalline palladium.
Scripta Met. Mater. 24, 145-150.

Nieman, G. W., Weertman, J. R., and Siegel, R. W. (1991).
Mechanical behavior of nanocrystalline Cu and Pd.
J. Mater. Res. 6, 1012-1027.

Pande, C. S., Masumura, R. A., and Armstrong, R. W. (1993).
Pile-up based Hall-Petch relation for nanoscale materials.
Nanostruct. Mater. 2, 323-331.

Pedersen, O. B., Carstensen, J. V., and Rasmussen, T. (1998) These proceedings.

Petch, N. J. (1953).

The cleavage strength of polycrystals.
J. Iron Steel Inst. 174, 25.
Phillpot, S. R., Wolf, D., and Gleiter, H. (1995a).
Molecular-dynamics study of the synthesis and characterization of a fully dense, three-dimenstional nanocrystalline material.
J. Appl. Phys. 78, 847-860.

Phillpot, S. R., Wolf, D., and Gleiter, H. (1995b).
A structural model for grain boundaries in nanocrystalline materials.
Scripta Met. Mater. 33, 1245-1251.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1988).
Numerical recipes in C (Cambridge University Press, Cambridge).

Rao, S., Hernandez, C., Simmons, J. P., Parthasarathy, T. A., and Woodward, C. (1998).
Green's function boundary conditions in two-dimensional and three-dimensional atomistic simulations of dislocations.
Phil. Mag. A 77, 231-256.

Rasmussen, T., Jacobsen, K. W., Leffers, T., Pedersen, O. B., Srinivasan, S. G., and Jónsson, H. (1997).
Atomistic determination of cross-slip pathway and energetics.
Phys. Rev. Lett. 79, 3676-3679.

Sanders, P. G., Fougere, G. E., Thompson, L. J., Eastman, J. A., and Weertman, J. R. (1997a).
Improvements in the synthesis and compaction of nanocrystalline materials.
Nanostruct. Mater. 8, 243-252.

Sanders, P. G., Youngdahl, C. J., and Weertman, J. R. (1997b).
The strength of nanocrystalline metals with and without flaws.
Mater. Sci. Eng. A 234-236, 77-82.

Schiøtz, J., Canel, L. M., and Carlsson, A. E. (1997).
Effects of crack tip geometry on dislocation emission and cleavage: A possible path to enhanced ductility.
Phys. Rev. B 55, 6211-6221.

Schiøtz, J. and Carlsson, A. E. (1997).
Calculation of elastic Green's functions for lattices with cavities.
Phys. Rev. B 56, 2292-2294.
(BR).

Schiøtz, J., Di Tolla, F. D., and Jacobsen, K. W. (1998).
Softening of nanocrystalline metals at very small grain sizes.
Nature 391, 561-563.

Schiøtz, J., Jacobsen, K. W., and Nielsen, O. H. (1995).
Kinematic generation of dislocations.
Phil. Mag. Lett. 72, 245-250.

Selitser, S. I. and Morris, J. W. (1994).
Substructure formation during plastic deformation.
Acta Metall. Mater. 42, 3985-3991.

Shenoy, V. B., Miller, R., Tadmor, E. B., Phillips, R., and Ortiz, M. (1998).
Quasicontinuum models of interfacial structure and deformation.
Phys. Rev. Lett. 80, 742-745.

Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R., and Ortiz, M. (to be published).
An adaptive finite element approach to atomic-scale mechanics -- the quasicontinuum method (preprint cond-mat/9710027).

Siegel, R. W. and Fougere, G. E. (1994).
Mechanical properties of nanophase materials.
In: Nanophase Materials: Synthesis -- Properties -- Applications, edited by G. C. Hadjipanayis and R. W. Siegel (Kluwer, Dordrecht), vol. 260 of NATO-ASI Series E: Applied Sciences, pp. 233-261, pp. 233-261.

Stoltze, P. (1997).
Simulation methods in atomic scale materials physics (Polyteknisk Forlag, Lyngby, Denmark).

Tadmor, E. B., Ortiz, M., and Phillips, R. (1996).
Quasicontinuum analysis of defects in solids.
Phil. Mag. A 73, 1529-1564.

Thomson, R., Zhou, S. J., Carlsson, A. E., and Tewary, V. K. (1992).
Lattice imperfections studied by the use of lattice Green's functions.
Phys. Rev. B 46, 10613-10622.

Valiev, R. Z., Chmelik, F., Bordeaux, F., Kapelski, G., and Baudelet, B. (1992).
The Hall-Petch relation in submicron-grained Al-1.5%Mg alloy.
Scripta Metall. Mater. 27, 855-860.

Van Swygenhoven, H. and Caro, A. (1997a).
Molecular dynamics computer simulation of nanophase Ni: structure and mechanical properties.
Nanostructured Materials 9, 669-672.

Van Swygenhoven, H. and Caro, A. (1997b).
Plastic behavior of nanophase Ni: a molecular dynamics computer simulation.
Appl. Phys. Lett. 71, 1652-1654.

Weertman, J. R. (1993).
Hall-Petch strengthening in nanocrystalline metals.
Mater. Sci. Eng. A 166, 161-167.

Zhou, S. J., Beazley, D. M., Lomdahl, P. S., and Holian, B. L. (1997).
Large-scale molecular dynamics simulations of three-dimensional ductile failure.
Phys. Rev. Lett. 78, 479-482.

Zhou, S. J., Carlsson, A. E., and Thomson, R. (1993).
Dislocation nucleation and crack stability: Lattice Green's-function treatment of cracks in a model hexagonal lattice.
Phys. Rev. B 47, 7710-7719.

Zhou, S. J., Carlsson, A. E., and Thomson, R. (1994).
Crack blunting effects on dislocation emission from cracks.
Phys. Rev. Lett. 72, 852-855.

Zhou, S. J., Preston, D. L., Lomdahl, P. S., and Beazley, D. M. (1998).
Large-scale molecular dynamics simulation of dislocation intersection in copper.
Science 279, 1525-1527.

Zhu, H. and Averback, R. S. (1996).
Sintering of nano-particle powders: simulations and experiments.
Materials and Manufacturing Processes 11, 905-923.

Zhu, X., Birringer, R., Herr, U., and Gleiter, H. (1987).
X-ray diffraction studies of nanometer-sized crystalline materials.
Phys. Rev. B 35, 9085-9090.



Jakob Schiotz
1998-08-18